Dynamika bryły sztywnej. Zadanie 1. Bloczki. Na rysunku poniżej pokazany jest układ dwóch bloczków, na które nawinięta jest nierozciągliwa nić. Bloczek dolny porusza się w dół rozwijając nić, która odwija się z górnego bloczka. Bloczek dolny ma moment bezwładności I 1, promień R 1 oraz masę m. Górny bloczek ma moment
To mini e-book, w którym opisane zostały prawa obowiązujące na maturze z fizyki. Dodatkowo do każdego prawa został nagrany materiał na YouTube rozszerzający informacje z mini e-booka i zawierający przykładowe zadania wraz z rozwiązaniami dotyczące omawianych praw. W tym materiale znajdziesz: 17 stron konkretów w mini e-booku, 15
Aby obliczyć drogę przebytą przez ciało skorzystamy ze wzorów wprowadzonych w zadaniu Ruch jednostajnie przyspieszony – zadanie nr 2: Wielkościami, które znamy są prędkość początkowa V0, prędkość końcowa V oraz opóźnienie a ciała. Czas t jest wielkością nieznaną. Aby go wyznaczyć przekształcimy wzór na prędkość
Dynamika - Zasady Dynamiki Newtona - zadanie 1. W układzie (jak na rysunku) masa m 1 =3kg, m 2 =2kg, m 3 =4kg. Masy bloczków i tarcie pomijamy. Oblicz przyspieszenie układu i siły napięcia sznurka. Największy w Polsce serwis o fizyce! Serwis edukacyjno-hobbystyczny dla każdego.
Zadania z dynamiki z rozwiązaniami. 6.1 Rozwiązywanie zadań związanych z zasadami dynamiki Newtona. Jeśli rozwiązaniem zadania jest wyliczenie siły, a jednostką, Rozwiązania zadań z fizyki. Dynamika – przykłady rozwiązanych zadań. Zadania z dynamiki znajdujące się na stronie fizyka.biz.Rozwiązane zadania i przykłady z dynamiki.
Vay Nhanh Fast Money. Kategoria: Masa atomowa, cząsteczkowa i molowa Typ: Oblicz W tabeli zestawiono właściwości fizyczne borowców. Nazwa pierwiastka Ogólna konfiguracja elektronów walencyjnych w stanie podstawowym Rozpowszechnienie w skorupie ziemskiej,% Gęstość,g · cm–3 Temperatura topnienia,K bor ns2np1 1,0 ⋅ 10−4 2,34 2570,00 glin 8,23 2,70 933,47 gal 1,9 ⋅ 10−4 5,91 302,91 ind 4,5 ⋅ 10−5 7,31 429,75 tal 8,5 ⋅ 10−5 11,85 577,00 Większość pierwiastków 13. grupy układu okresowego stanowi mieszaninę 2 trwałych izotopów, np. tal występuje w przyrodzie w postaci 2 izotopów o masach równych 202,97 u i 204,97 u. Bor jest pierwiastkiem niemetalicznym, podczas gdy pozostałe pierwiastki tej grupy są metalami. Glin i tal mają typowe sieci metaliczne o najgęstszym ułożeniu atomów, gal i ind tworzą sieci rzadko spotykane u metali. Te różnice w strukturze powodują różnice w twardości i temperaturach topnienia. Glin jest kowalny i ciągliwy; gal jest twardy i kruchy, natomiast ind należy do najbardziej miękkich pierwiastków – daje się kroić nożem, podobnie jak tal. Elementarny bor wykazuje bardzo wysoką temperaturę topnienia, co jest spowodowane występowaniem w jego sieci przestrzennej silnych wiązań kowalencyjnych. Bor można otrzymać w reakcji redukcji tlenku boru metalicznym magnezem użytym w nadmiarze. Otrzymany tą metodą preparat zawiera 98% boru, natomiast 2% stanowią zanieczyszczenia takie, jak tlenek magnezu i nadmiar użytego do reakcji magnezu. Czysty krystaliczny bor można otrzymać między innymi przez rozkład termiczny jodku boru. Krystaliczny bor ma barwę czarnoszarą, wykazuje dużą twardość i jest złym przewodnikiem elektryczności; charakteryzuje się małą aktywnością chemiczną – nie działa na niego wrzący kwas solny ani kwas fluorowodorowy. Na podstawie: A. Bielański, Podstawy chemii nieorganicznej, Warszawa 2004, s. 760–793; J. Sawicka i inni, Tablice chemiczne, Gdańsk 2002, s. 202. Z układu okresowego pierwiastków odczytaj z dokładnością do drugiego miejsca po przecinku średnią masę atomową talu i oblicz, jaki procent atomów talu występujących w przyrodzie stanowią atomy o masach atomowych podanych w informacji. Rozwiązanie Przykład poprawnej odpowiedzi Dane:Matomowa talu = 204,38 uMasy atomowe dwóch izotopówtalu: 202,97 u i 204,97 u Szukane:x – procent atomów talu o masie atomowej 202,97 uy – procent atomów talu o masie atomowej 204,97 uy = 100% – x Rozwiązanie: 204,38 u = 202,97 u ⋅ x + 204,97 u ⋅ (100% − x)100% x = 29,5% y = 100% – 29,5% = 70,5% Wskazówki Aby rozwiązać zadanie, musisz odczytać z układu okresowego pierwiastków chemicznych średnią masę atomową talu z dokładnością do drugiego miejsca po przecinku. Trzeba także wiedzieć, że średnią masę atomową pierwiastka oblicza się jako średnią ważoną z mas atomowych wszystkich izotopów danego pierwiastka. Dane potrzebne do rozwiązania zadania (oprócz średniej masy atomowej odczytanej z układu okresowego) podane są w informacji do zadań. Musisz je podstawić do wzoru na średnią ważoną i dodatkowo wprowadzić oznaczenia dotyczące procentu atomów talu o masie atomowej 202,97 u, np. x i procentu atomów talu o masie atomowej 204,97 u, np. (100% – x). Po dokonaniu odpowiednich obliczeń należy podać procent atomów talu o masie atomowej 202,97 u (29,5%) oraz procent atomów talu o masie atomowej 204,97 u (70,5%). Podczas rozwiązywania zadania musisz poprawnie zaokrąglać wyniki pośrednie i wynik końcowy oraz pamiętać o podaniu wyników w procentach.
zadania z fizyki atomowej z rozwiązaniami